欢迎来到 广东省现代健康产业研究院、广东省营养健康产业协会!

联系我们

C

广东省现代健康产业研究院、广东省营养健康产业协会

电 话:139 0746 1591

邮 箱:djkpt@139.com

地 址:广州市番禺区番禺大道北62号中辉大厦B栋三楼

当前位置:首页 > 技术服务 > 技术资料

智能医疗:远程智能监控应用

2021-08-13

随着全球人口老化及慢性病患人口增加,远端居家照护成为先进国家医疗发展的重要议题。现阶段,生理参数量测技术已出现重大进步,透过结合可携式传感装置与人体区域网路(BodyAreaNetwork,BAN),医疗人员将可持续性监控与分析病患生理信号,给予病患正确健康指导、谘询与追踪;同时有效降低医疗资源浪费,并改善医疗品质。

智能医疗监控系统出现重大设计突破。传统医疗照护需要医护人员不定时监察病患传感器的生理信号,使得护理人员疲于奔命。现代医疗照护系统透过人体区域网路技术,能让护理人员即时远端监控与分析病患的生理信号,假若病患出现病危状况,医护人员也可即时得知并做出危急处理。

人体区域网路由多个传感器(EEG、ECG等)组成,分布在病患身体上收集和传送生理信号(图1)。所有传感器的生理信号由连结传感器(手錶或其他携带式装置)汇集,并透过外部无线网路(WLAN、WWAN)将病患的生理信号传送至医院伺服器并储存。让医护人员能即时监控与分析病患的生理信号,达到降低医疗资源使用的目的。

人体区域网路可应用于人体生理信号监测或多媒体娱乐等近身无线传感技术,目前IEEE802.15.6TaskGroup已着手制定人体区域网路规范,并定义叁种实体层方式,包括窄频(NarrowBand)、超宽频(UltraWideband,UWB)及人体通讯(HBC)。

其中,人体通讯使用人体通道传输做为实体层媒介,可降低传输功耗,因而其能源效率较窄频及超宽频更具优势。为增加可携带性和节省电源替换成本,必须使用轻薄短小的薄膜电池,或利用能源收集再生(EnergyHarvesting)方式提供电力,甚至以回收接收无线信号的能量进一步供给电力。因此,超低能源消耗是无线人体通讯系统设计上的关键重点,以延长电池生命周期。

然而,人体通讯的通道响应具电容特性,会随着穿戴者的年龄、身高体重、姿势、电极几何设计有所差异,及人体周遭环境而影响通道变化。

由于人体通讯係以人体为通讯媒介,藉由静电耦合(ElectrostaticCoupling)的方式传输,因此,其系统仅需复杂度低的数字电路与电极片(取代天线)来实现。其中,传送端以数字电压信号输入至电极片,在体表上转化为电场传导;当接收端电极片感应到电场,就能转化为电压信号进行接收,要注意的是,人体与传感器皆须接地才能产生回路。

IEEE802.15.6开路人体区域网路发展更完备

IEEE802.15.6已说明人体通讯讯框结构、传送端架构与通道模型,并据此开发出接收机演算法,有效进行封包侦测与符元时序估测。从模拟结果中,发现人体通讯系统在低SNR的条件下进行资料传输,仍可实现低错误率的效能,达到低功率、高资料传输率的人体通讯网路。

现阶段,人体区域网路已可即时且准确提供多种病患的生医传感器信号予医疗人员,从而达到正确的健康指导、咨询与追踪,大幅提升医疗照护品质,并降低医疗资源的使用。

分享

上一篇:没有了
下一篇: 技术产品解析